Search Icon
ΑΝΑΖΗΤΗΣΗ
Τεχνολογία

Το AI προβλέπει την πρόοδο του γλαυκώματος σε άτομα υψηλού κινδύνου

Το AI προβλέπει την πρόοδο του γλαυκώματος σε άτομα υψηλού κινδύνου

 Η τεχνητή νοημοσύνη μπορεί να προβλέψει εάν και πότε άτομα υψηλού κινδύνου για γλαύκωμα, που συνήθως αναφέρονται ως «ύποπτοι για γλαύκωμα», θα το αναπτύξουν πραγματικά.

Με την επιφύλαξη περαιτέρω βελτίωσης με μεγαλύτερο αριθμό ατόμων, αυτό μπορεί να αποδειχθεί χρήσιμο διαγνωστικό βοήθημα για τους γιατρούς, λένε οι ερευνητές. Η τεχνητή νοημοσύνη που είναι εκπαιδευμένη να αναγνωρίζει κόκκινες σημαίες σε εικόνες αμφιβληστροειδούς και κλινικές πληροφορίες μπορεί να προβλέψει εάν και πότε άτομα υψηλού κινδύνου για γλαύκωμα, που συνήθως αναφέρονται ως «ύποπτοι για γλαύκωμα», θα το αναπτύξουν πραγματικά, διαπιστώνει έρευνα που δημοσιεύτηκε στο διαδίκτυο. στο British Journal of Ophthalmology.

Με την επιφύλαξη περαιτέρω βελτίωσης με μεγαλύτερο αριθμό ατόμων, αυτό μπορεί να αποδειχθεί χρήσιμο διαγνωστικό βοήθημα για τους γιατρούς, συμπεραίνουν οι ερευνητές. Οι πρόσφατες εξελίξεις στην τεχνητή νοημοσύνη ώθησαν τον σχεδιασμό αλγορίθμων για την καλύτερη ανίχνευση της εξέλιξης του γλαυκώματος. Ωστόσο, κανένας μέχρι στιγμής δεν έχει βασιστεί στα κλινικά χαρακτηριστικά για την πρόβλεψη της εξέλιξης της νόσου σε άτομα υψηλού κινδύνου, επισημαίνουν οι ερευνητές.

Το γλαύκωμα είναι μια από τις κύριες αιτίες τύφλωσης παγκοσμίως. Αλλά είναι ιδιαίτερα δύσκολο για τους γιατρούς να γνωρίζουν εάν και πότε άτομα με ύποπτα σημάδια πρώιμης βλάβης του οπτικού νεύρου, αλλά χωρίς το βασικό διαγνωστικό χαρακτηριστικό της ασυνήθιστα υψηλής εσωτερικής πίεσης εντός της οφθαλμικής-ενδοφθάλμιας πίεσης ή της ΕΟΠ για σύντομο χρονικό διάστημα θα αναπτύξουν γλαύκωμα και κινδυνεύουν να χάσουν την όρασή τους, εξηγούν. Με σκοπό να χρησιμοποιήσουν την τεχνητή νοημοσύνη για να προσπαθήσουν να γεφυρώσουν αυτό το χάσμα, οι ερευνητές εξέτασαν τις κλινικές πληροφορίες για 12.458 μάτια με ύποπτα πρώιμα σημάδια γλαυκώματος.

Μεταξύ αυτών, εστίασαν σε 210 μάτια που είχαν εξελιχθεί σε γλαύκωμα και 105 που δεν είχαν εξελιχθεί, όλα τα οποία παρακολουθούνταν κάθε 6-12 μήνες για τουλάχιστον 7 χρόνια. Στη συνέχεια χρησιμοποίησαν κόκκινα σημάδια σε εικόνες αμφιβληστροειδούς που τραβήχτηκαν κατά την περίοδο παρακολούθησης συν 15 βασικά κλινικά χαρακτηριστικά για να δημιουργήσουν ένα σύνολο «προγνωστικών» συνδυασμών, οι οποίοι στη συνέχεια τροφοδοτήθηκαν σε 3 ταξινομητές μηχανικής μάθησης – έναν αλγόριθμο που παραγγέλνει ή ταξινομεί αυτόματα δεδομένα.

Τα κλινικά χαρακτηριστικά περιελάμβαναν ηλικία, φύλο, ΕΟΠ, πάχος κερατοειδούς, πάχος στιβάδας νεύρου αμφιβληστροειδούς, αρτηριακή πίεση και βάρος (ΔΜΣ). Και οι τρεις αλγόριθμοι είχαν καλή απόδοση και ήταν σε θέση να προβλέψουν με συνέπεια την εξέλιξη στο γλαύκωμα και πότε, με υψηλό βαθμό ακρίβειας: 91-99%. Τα 3 πιο σημαντικά προγνωστικά κλινικά χαρακτηριστικά ήταν η αρχική ΕΟΠ, η διαστολική αρτηριακή πίεση – ο δεύτερος αριθμός σε μια μέτρηση της αρτηριακής πίεσης που μετρά την αρτηριακή πίεση μεταξύ των καρδιακών παλμών – και το μέσο πάχος της στιβάδας των νευρικών ινών του αμφιβληστροειδούς.

Η μέση ηλικία των συμμετεχόντων κατά την έναρξη της περιόδου παρακολούθησης ήταν 55, κυμαινόμενη από 33 έως 76. Η αρχική ηλικία δεν προέκυψε ως βασικός προγνωστικός παράγοντας, αλλά η μέση ηλικία όσων εξέλιξαν σε γλαύκωμα ήταν σημαντικά χαμηλότερη από αυτή των ποιος δεν το έκανε, σημειώνουν οι ερευνητές. Αναγνωρίζουν διάφορους περιορισμούς στα ευρήματά τους. Για παράδειγμα, τα αποτελέσματα εκπαίδευσης σε τεχνητή νοημοσύνη βασίστηκαν σε σχετικά λίγες πληροφορίες και μόνο εκείνοι με φυσιολογική ΕΟΠ που δεν είχαν λάβει θεραπεία για το γλαύκωμα κατά τη διάρκεια της παρακολούθησης συμπεριλήφθηκαν στη μελέτη.

«Τα τρέχοντα αποτελέσματα, επομένως, αποδεικνύουν μόνο ότι το ενσωματωμένο μοντέλο λειτουργεί καλά για ένα περιορισμένο φάσμα ασθενών», προειδοποιούν. Ωστόσο, καταλήγουν στο συμπέρασμα: «Τα αποτελέσματά μας υποδηλώνουν ότι τα μοντέλα που έχουν εκπαιδευτεί τόσο σε οφθαλμικές εικόνες όσο και σε κλινικά δεδομένα έχουν τη δυνατότητα να προβλέψουν την εξέλιξη της νόσου σε ασθενείς. Πιστεύουμε ότι με πρόσθετη εκπαίδευση και δοκιμές σε ένα μεγαλύτερο σύνολο δεδομένων, τα μοντέλα μας μπορούν να γίνουν ακόμα καλύτερα και ότι με τέτοια μοντέλα, οι κλινικοί γιατροί θα ήταν καλύτερα εξοπλισμένοι για να προβλέψουν τα αντίστοιχα νοσήματα των ασθενών. “

 

Διαβάστε όλες τις τελευταίες Ειδήσεις για την υγεία από την Ελλάδα και τον Κόσμο
Ακολουθήστε το healthweb.gr στο Google News και μάθετε πρώτοι όλες τις ειδήσεις
Ακολουθήστε το healthweb.gr στο κανάλι μας στο YouTube

Διαβάστε Eπίσης:

Η πλειοψηφία των ανθρώπων υποβάλλονται σε επέμβαση οράσεως;

Μπορεί η τεχνητή νοημοσύνη να ανιχνεύσει παθήσεις των ματιών και Πάρκινσον;

Εντοπίστηκε ανεπιθύμητη συσχέτιση μεταξύ της χρήσης αποκλειστών διαύλων ασβεστίου και γλαυκώματος

Πώς να αποτρέψετε την απώλεια όρασης λόγω δημιουργίας γλαυκώματος;

svg%3E svg%3E
svg%3E
svg%3E
Περισσότερα

3D κυτταρικό μοντέλο: Μια νέα προσέγγιση στη θεραπεία τραυματισμών χειλιών

3D κυτταρικό μοντέλο: Οι ερευνητές έχουν σημειώσει μια σημαντική πρόοδο στην αναγεννητική ιατρική, δημιουργώντας το πρώτο τρισδιάστατο κυτταρικό μοντέλο στον κόσμο που έχει σχεδιαστεί ειδικά για τη μελέτη τραυματισμών στα χείλη.

Υγειονομική περίθαλψη: Πώς το AI δημιουργεί ένα νέο ψηφιακό χάσμα υγείας

Υγειονομική περίθαλψη: Καθώς βρισκόμαστε στο κατώφλι μιας επανάστασης στον τομέα της υγειονομικής περίθαλψης, είναι κρίσιμο να εξετάσουμε τις βαθιές κοινωνικές επιπτώσεις που συνεπάγεται.

Καρκίνος του Μαστού: Νέες γνώσεις από την κυτταρική ανάλυση

Καρκίνος του Μαστού: Η πρόσφατη έρευνα προσφέρει μια σημαντική κατανόηση των διάφορων τύπων κυττάρων του μαστού και της σχέσης τους με την ανάπτυξη και εξάπλωση του καρκίνου του μαστού.

Μετρητές γλυκόζης: Μια νέα τάση για την προσωπική ευεξία;

Μετρητές γλυκόζης: Καθώς οι τομείς της ευεξίας και της τεχνολογίας υγείας εξελίσσονται, οι μετρητές γλυκόζης προσελκύουν το ενδιαφέρον ως ενδεχόμενο νέο αξεσουάρ για όσους ενδιαφέρονται για την προσωπική τους υγεία.

Υπέρηχος: Νέα ελπίδα για γρήγορη διάγνωση εγκεφαλικών τραυματισμών

Υπέρηχος: Η τεχνολογία του υπερήχου, γνωστή για τη χρήση της στη διάγνωση διαφόρων ιατρικών καταστάσεων, αποδεικνύεται ολοένα και πιο χρήσιμη και ως εργαλείο αναζήτησης και διάσωσης, ιδίως σε περιπτώσεις εγκεφαλικών τραυματισμών.

Καρκίνος του προστάτη: Πώς η τεχνητή νοημοσύνη βελτιώνει τη διάγνωση του;

Καρκίνος του προστάτη: Η ενσωμάτωση της τεχνητής νοημοσύνης στον ιατρικό τομέα έχει επαναστατήσει διάφορες διαγνωστικές διαδικασίες, με μία από τις πιο υποσχόμενες εφαρμογές της να είναι η μέτρηση και ανάλυση των βλαβών του καρκίνου του προστάτη.

Διαγνωστική επανάσταση: Ανίχνευση σηψαιμίας σε νεογέννητα με τεχνητή νοημοσύνη

Διαγνωστική επανάσταση: Νέα ερευνητικά δεδομένα έχουν οδηγήσει στην ανάπτυξη ενός καινοτόμου εργαλείου που μπορεί να προβλέψει τη σηψαιμία σε νεογέννητα που φαίνονται υγιή.

Close Icon