Search Icon
ΑΝΑΖΗΤΗΣΗ
Τεχνολογία

Μηχανική μάθηση υγεία: Το machine learning επιτρέπει την βέλτιστη ταξινόμηση του καρκίνου μαστού

Μηχανική μάθηση υγεία: Το machine learning επιτρέπει την βέλτιστη ταξινόμηση του καρκίνου μαστού

Μηχανική μάθηση υγεία: Σε ένα ιατρικό εργαστήριο, ένα τέτοιο μοντέλο υπόσχεται εξοικονόμηση χρόνου ταξινομώντας τις εικόνες γρηγορότερα από άλλες τεχνολογίες που χρησιμοποιούνται στο εργαστήριο.


Ένα μοντέλο μηχανικής μάθησης που αναπτύχθηκε από το Michigan Tech χρησιμοποιεί την πιθανότητα να ταξινομήσει με μεγαλύτερη ακρίβεια τον καρκίνο του μαστού που εμφανίζεται στις ιστοπαθολογικές εικόνες και να αξιολογήσει την αβεβαιότητα των προβλέψεών του. Στην εργασία τους που δημοσιεύτηκε πρόσφατα στο περιοδικό IEEE Transactions on Medical Imaging, οι μεταπτυχιακοί φοιτητές μηχανολογίας Ponkrshnan Thiagarajan και Pushkar Khairnar και η Susanta Ghosh, επίκουρη καθηγήτρια μηχανολογίας και ειδικός στη μηχανική μάθηση, σκιαγραφούν το νέο τους πιθανοτικό μοντέλο μηχανικής μάθησης.

Καρκίνος του μαστού: Μια πραγματική μάστιγα

Ο καρκίνος του μαστού είναι ο πιο συχνός καρκίνος με το υψηλότερο ποσοστό θνησιμότητας. Η ταχεία ανίχνευση και διάγνωση μειώνει τον αντίκτυπο της νόσου. Ωστόσο, η ταξινόμηση του καρκίνου του μαστού με χρήση ιστοπαθολογικών εικόνων είναι μια πρόκληση λόγω της μεροληψίας στα δεδομένα και της μη διαθεσιμότητας σχολιασμένων δεδομένων σε μεγάλες ποσότητες. Η αυτόματη ανίχνευση του καρκίνου του μαστού χρησιμοποιώντας το συνελικτικό νευρωνικό δίκτυο, μιας τεχνικής μηχανικής μάθησης, έχει αποδειχθεί πολλά υποσχόμενη. Ωστόσο, σχετίζεται με υψηλό κίνδυνο ψευδώς θετικών και ψευδώς αρνητικών.

Ένα νέο μοντέλο μηχανικής μάθησης που αναπτύχθηκε από ερευνητές του Τεχνολογικού Πανεπιστημίου του Μίσιγκαν μπορεί να αξιολογήσει την αβεβαιότητα στις προβλέψεις του καθώς ταξινομεί καλοήθεις και κακοήθεις όγκους, συμβάλλοντας στη μείωση αυτού του κινδύνου. “Οποιοσδήποτε αλγόριθμος μηχανικής μάθησης που έχει αναπτυχθεί μέχρι στιγμής θα έχει κάποια αβεβαιότητα στην πρόβλεψή του”, δήλωσε ο Thiagarajan. “Δεν υπάρχει τρόπος να ποσοτικοποιηθούν αυτές οι αβεβαιότητες. Ακόμα κι αν ένας αλγόριθμος μας λέει ότι ένα άτομο έχει καρκίνο, δεν γνωρίζουμε το επίπεδο εμπιστοσύνης σε αυτήν την πρόβλεψη.”

Λεπτομέρειες για το νέο μοντέλο μηχανικής μάθησης

Το μοντέλο Michigan Tech διαφοροποιεί τις αρνητικές και τις θετικές κατηγορίες αναλύοντας τις εικόνες, οι οποίες στο πιο βασικό τους επίπεδο είναι συλλογές pixel. Εκτός από αυτήν την ταξινόμηση, το μοντέλο μπορεί να μετρήσει την αβεβαιότητα στις προβλέψεις του. Σε ένα ιατρικό εργαστήριο, ένα τέτοιο μοντέλο υπόσχεται εξοικονόμηση χρόνου ταξινομώντας τις εικόνες γρηγορότερα από μια τεχνολογία εργαστηρίου. Και, επειδή το μοντέλο μπορεί να αξιολογήσει το δικό του επίπεδο βεβαιότητας, μπορεί να παραπέμψει τις εικόνες σε έναν άνθρωπο ειδικό όταν είναι λιγότερο σίγουρο.

Γιατί όμως ένας μηχανολόγος μηχανικός δημιουργεί αλγόριθμους για την ιατρική κοινότητα; Η ιδέα του Thiagarajan ξεκίνησε όταν άρχισε να χρησιμοποιεί μηχανική μάθηση για να μειώσει τον υπολογιστικό χρόνο που απαιτείται για προβλήματα μηχανολογίας. Είτε ένας υπολογισμός αξιολογεί την παραμόρφωση των δομικών υλικών είτε καθορίζει εάν κάποιος έχει καρκίνο του μαστού, είναι σημαντικό να γνωρίζουμε την αβεβαιότητα αυτού του υπολογισμού—οι βασικές ιδέες παραμένουν οι ίδιες. “Ο καρκίνος του μαστού είναι ένας από τους καρκίνους που έχει την υψηλότερη θνησιμότητα και την υψηλότερη συχνότητα εμφάνισης”, είπε ο Thiagarajan.

 

Διαβάστε όλες τις τελευταίες Ειδήσεις για την υγεία από την Ελλάδα και τον Κόσμο
Ακολουθήστε το healthweb.gr στο Google News και μάθετε πρώτοι όλες τις ειδήσεις
Ακολουθήστε το healthweb.gr στο κανάλι μας στο YouTube

Διαβάστε Eπίσης:

Η άσκηση ανακουφίζει από τον πόνο μετά από χειρουργείο για καρκίνο μαστού

Παράγοντες που αυξάνουν τον κίνδυνο μετάστασης του καρκίνου του μαστού σύμφωνα με διεθνή μελέτη

Την ερχόμενη δεκαετία τα health tracking apps μεταμορφώνουν την υγειονομική περίθαλψη

Ξεκλειδώνοντας το ανθρώπινο δυναμικό μέσω υπεραυτοματισμού

svg%3E svg%3E
svg%3E
svg%3E
Περισσότερα

Πώς η Γενετική βελτιώνει την όραση σε παιδιά

Γενετική: Μια πρόσφατη μελέτη επικεντρώθηκε σε μια συγκεκριμένη γονιδιακή θεραπεία που αποσκοπεί στην αποκατάσταση της λειτουργίας των φωτοευαίσθητων κυττάρων του αμφιβληστροειδούς. Αυτή η θεραπεία βασίζεται στην ενσωμάτωση ενός υγιούς γονιδίου που λείπει ή είναι μη λειτουργικό στους ασθενείς.

Τρισδιάστατα αιμοφόρα αγγεία και ανθρώπινα όργανα

3D printing: Η σύγχρονη ιατρική χρησιμοποιεί τρισδιάστατη εκτύπωση για να δημιουργήσει σκληρά εμφυτεύματα όπως κρανιακές πλάκες και αρθρώσεις ισχίου, προθέσεις άκρων και ιατρικές συσκευές. 

Νέο AI μοντέλο πρόβλεψης της κατάθλιψης

Social media: Η ανάλυση δεδομένων από social media μπορεί να ενσωματώσει επίσης παράγοντες όπως η κοινωνική υποστήριξη, οι διαπροσωπικές σχέσεις και οι αλλαγές στη συμπεριφορά, προσφέροντας μια πιο ολοκληρωμένη εικόνα της ψυχικής υγείας ενός ατόμου.

Επανάσταση στη διάγνωση διαταραχών ύπνου με σύγχρονη τεχνολογία

Έξυπνες πυτζάμες: Οι παραδοσιακές μέθοδοι διάγνωσης και παρακολούθησης των διαταραχών ύπνου συχνά απαιτούν δαπανηρές μελέτες ύπνου σε εργαστήρια. Ωστόσο, μια καινοτόμος ανακάλυψη μπορεί να αλλάξει τον τρόπο που παρακολουθούμε τον ύπνο.

Η χρήση φωτός και βαφών ενδυναμώνει τη θεραπεία του καρκίνου;

Φωτοδυναμική θεραπεία: Μια νέα προσέγγιση στη θεραπεία του καρκίνου αναδύεται με την ανάπτυξη βαφών που ενεργοποιούνται από το φως και οι οποίες δείχνουν υποσχέσεις στο να στοχεύουν και να καταστρέφουν τα καρκινικά κύτταρα.

Νέο τεστ αίματος αλλάζει την πρόγνωση και τη διαχείριση της προεκλαμψίας;

Προεκλαμψία: Ερευνητές παρουσίασαν πρόσφατα ένα νέο τεστ αίματος που χρησιμοποιεί το ελεύθερο κυτταρικό DNA που αποβάλλεται από τον πλακούντα για να προβλέψει με ακρίβεια την εμφάνιση της προεκλαμψίας.

Πώς το AI προβλέπει τα ψυχολογικά συμπτώματα των καρκινοπαθών 

AI: Συνολικά, η χρήση της τεχνητής νοημοσύνης για την πρόβλεψη ψυχολογικών συμπτωμάτων στους καρκινοπαθείς προσφέρει ελπίδα για μια πιο ολιστική προσέγγιση στην αντιμετώπιση της νόσου, αναγνωρίζοντας τη σημασία της ψυχικής υγείας στη συνολική θεραπεία των ασθενών.

Τεστ ανιχνεύει έγκαιρα καρκίνο πνεύμονα σε ασθενείς υψηλού κινδύνου 

Καρκίνος πνεύμονα: Ο ασθενής εισέρχεται σε ένα μηχάνημα αξονικής τομογραφίας και η διαδικασία διαρκεί μόλις λίγα λεπτά. Οι εικόνες που λαμβάνονται επιτρέπουν στους γιατρούς να ανιχνεύσουν τυχόν ανωμαλίες ή όγκους στους πνεύμονες σε πολύ πρώιμο στάδιο, γεγονός που διευκολύνει την έγκαιρη παρέμβαση.

Close Icon