Search Icon
ΑΝΑΖΗΤΗΣΗ
Τεχνολογία

Μηχανική μάθηση: Μπορεί να προβλέψει την ανάπτυξη όγκων του εγκεφάλου

Μηχανική μάθηση: Μπορεί να προβλέψει την ανάπτυξη όγκων του εγκεφάλου

Μηχανική μάθηση:  Το πολύμορφο γλοιοβλάστωμα (GBM) είναι ένας τύπος καρκίνου του εγκεφάλου με ποσοστό επιβίωσης ενός έτους. Λόγω του εξαιρετικά πυκνού πυρήνα του, της γρήγορης ανάπτυξης και της θέσης του στον εγκέφαλο, είναι δύσκολο να θεραπευθεί.


Ερευνητές στο Πανεπιστήμιο του Waterloo δημιούργησαν ένα υπολογιστικό μοντέλο που μπορεί να προβλέψει καλύτερα τον σχηματισμό θανατηφόρων όγκων του εγκεφάλου. Το πολύμορφο γλοιοβλάστωμα (GBM) είναι ένας τύπος καρκίνου του εγκεφάλου με ποσοστό επιβίωσης ενός έτους. Λόγω του εξαιρετικά πυκνού πυρήνα του, της γρήγορης ανάπτυξης και της θέσης του στον εγκέφαλο, είναι δύσκολο να θεραπευθεί. Η εκτίμηση της διαχυτικότητας και του ρυθμού πολλαπλασιασμού αυτών των όγκων είναι χρήσιμη για τους κλινικούς γιατρούς, αλλά αυτές οι πληροφορίες είναι δύσκολο να εκτιμηθούν γρήγορα και με ακρίβεια για έναν μεμονωμένο ασθενή.

Ερευνητές από το Πανεπιστήμιο του Βατερλό και το Πανεπιστήμιο του Τορόντο συνεργάστηκαν με το Νοσοκομείο St. Michael’s στο Τορόντο για να αναλύσουν δεδομένα μαγνητικής τομογραφίας από πολλούς πάσχοντες από GBM. Χρησιμοποιούν μηχανική μάθηση για να αναλύσουν πλήρως τον όγκο ενός ασθενούς, για να προβλέψουν καλύτερα την εξέλιξη του καρκίνου. Οι ερευνητές ανέλυσαν δύο σετ μαγνητικής τομογραφίας από κάθε έναν από τους πέντε ανώνυμους ασθενείς που έπασχαν από GBM. Οι ασθενείς υποβλήθηκαν σε εκτεταμένες μαγνητικές τομογραφίες, περίμεναν αρκετούς μήνες και στη συνέχεια έλαβαν ένα δεύτερο σετ μαγνητικής τομογραφίας.

Επειδή αυτοί οι ασθενείς, για άγνωστους λόγους, επέλεξαν να μην λάβουν καμία θεραπεία ή παρέμβαση κατά τη διάρκεια αυτής της περιόδου, η μαγνητική τομογραφία παρείχε στους επιστήμονες μια μοναδική ευκαιρία να κατανοήσουν πώς αναπτύσσεται η GBM όταν δεν ελέγχεται. Οι ερευνητές χρησιμοποίησαν ένα μοντέλο βαθιάς μάθησης για να μετατρέψουν τα δεδομένα της μαγνητικής τομογραφίας σε εκτιμήσεις παραμέτρων ειδικών για τον ασθενή που παρέχουν πληροφορίες για ένα προγνωστικό μοντέλο για την ανάπτυξη GBM. Αυτή η τεχνική εφαρμόστηκε σε ασθενείς και συνθετικούς όγκους, για τους οποίους ήταν γνωστά τα αληθινά χαρακτηριστικά, επιτρέποντάς τους να επικυρώσουν το μοντέλο.

«Θα θέλαμε πολύ να κάνουμε αυτή την ανάλυση σε ένα τεράστιο σύνολο δεδομένων», δήλωσε ο Κάμερον Μίνι, υποψήφιος διδάκτορας στα Εφαρμοσμένα Μαθηματικά και επικεφαλής ερευνητής της μελέτης, προσθέτοντας: «Με βάση τη φύση της ασθένειας, ωστόσο, αυτό είναι πολύ δύσκολο γιατί υπάρχει δεν είναι μεγάλο προσδόκιμο ζωής και οι άνθρωποι τείνουν να ξεκινούν θεραπεία. Αυτός είναι ο λόγος για τον οποίο η ευκαιρία να συγκριθούν πέντε όγκοι χωρίς θεραπεία ήταν τόσο σπάνια και πολύτιμη».

Τώρα που οι επιστήμονες έχουν ένα καλό μοντέλο για το πώς το GBM αναπτύσσεται χωρίς θεραπεία, το επόμενο βήμα τους είναι να επεκτείνουν το μοντέλο ώστε να συμπεριλάβει την επίδραση της θεραπείας στους όγκους. Τότε το σύνολο δεδομένων θα αυξανόταν από μια χούφτα μαγνητική τομογραφία σε χιλιάδες. Ο Meaney τονίζει ότι η πρόσβαση σε δεδομένα MRI – και η συνεργασία μεταξύ μαθηματικών και κλινικών ιατρών – μπορεί να έχει τεράστιο αντίκτυπο στους ασθενείς στο μέλλον. «Η ενσωμάτωση της ποσοτικής ανάλυσης στην υγειονομική περίθαλψη είναι το μέλλον», είπε ο Meaney.

Διαβάστε όλες τις τελευταίες Ειδήσεις για την υγεία από την Ελλάδα και τον Κόσμο
Ακολουθήστε το healthweb.gr στο Google News και μάθετε πρώτοι όλες τις ειδήσεις
Ακολουθήστε το healthweb.gr στο κανάλι μας στο YouTube

Διαβάστε Eπίσης:

Πώς μπορεί το ρομπότ να αποκτήσει την αίσθηση της όσφρησης;

ΑΙ: Αντικατοπτρίζει τον κίνδυνο γνωστικής έκπτωσης και Αλτσχάιμερ

Laser αποκαλύπτουν ότι πρέπει να κλείνετε το καπάκι της τουαλέτας

Εργαλείο τεχνητής νοημοσύνης που αναπτύχθηκε για να βοηθήσει στη διάγνωση σε πραγματικό χρόνο κατά τη διάρκεια χειρουργικής επέμβασης

svg%3E svg%3E
svg%3E
svg%3E
Περισσότερα

Πρωτοποριακό μίνι ρομπότ πραγματοποιεί βιοψίες 

Ρομποτ βιοψία: Ένα από τα κύρια πλεονεκτήματα αυτού του μίνι ρομπότ είναι η ελαχιστοποίηση του κινδύνου μόλυνσης και επιπλοκών που συνδέονται με τις παραδοσιακές βιοψίες. Δεδομένου ότι δεν απαιτείται φυσική παρέμβαση, οι ασθενείς υποβάλλονται σε λιγότερη ταλαιπωρία και η ανάρρωσή τους είναι ταχύτερη.

Σαρώσεις προβλέπουν τις γλωσσικές ικανότητες παιδιών με ΔΑΦ

Σαρώσεις εγκεφάλου: Μελετώντας την εγκεφαλική δραστηριότητα κατά τη διάρκεια γλωσσικών εργασιών, οι ερευνητές μπορούν να εντοπίσουν τις περιοχές του εγκεφάλου που είναι υπεύθυνες για την παραγωγή και κατανόηση της γλώσσας.

Tεστ DNA για την βακτηριακή κολπίτιδα

Βακτηριακή κολπίτιδα: Eρευνητές ανέπτυξαν ένα απλό εργαστηριακό τεστ βασισμένο σε DNA PCR, σε μια πιο λεπτομερή γενετική ανάλυση της κύριας ομάδας βακτηριακών οργανισμών που προκαλούν τη μόλυνση.

Πώς η φορητή τεχνολογία μεταμορφώνει τη φροντίδα των ποδιών

Φορητή τεχνολογία: Είναι ένα σημαντικό βήμα προς τα εμπρός για την υγεία των ποδιών. Προσφέρει έγκαιρες προειδοποιήσεις και εξατομικευμένες πληροφορίες πέρα ​​από την παραδοσιακή μέθοδο.

Πώς οι μαγνητικές σαρώσεις εντοπίζουν 6 τύπους κατάθλιψης 

Μαγνητικές σαρώσεις: Αυτές οι ανακαλύψεις με τη χρήση μαγνητικών σαρώσεων προτείνουν ότι η κατάθλιψη δεν είναι μια ενιαία διαταραχή αλλά ένα σύνθετο φαινόμενο με πολλές υποκατηγορίες, καθένα από τα οποία απαιτεί διαφορετική προσέγγιση στη διάγνωση και θεραπεία.

Η ανάπτυξη μίνι εντέρων βοηθά τη νόσο Crohn

Νόσος Crohn: Οι μίνι εντερικές καλλιέργειες μπορούν να παρέχουν πληροφορίες σχετικά με το πώς οι διαφορετικοί τύποι φλεγμονής επηρεάζουν την εντερική λειτουργία.

Μίνι κυλιόμενο ρομπότ παίρνει εικονικές βιοψίες

Ρομποτική: Είναι η πρώτη φορά που κατέστη δυνατή η δημιουργία τρισδιάστατων εικόνων υπερήχων υψηλής ανάλυσης που λαμβάνονται από έναν ανιχνευτή βαθιά μέσα στη γαστρεντερική οδό ή στο έντερο.

Close Icon