Search Icon
ΑΝΑΖΗΤΗΣΗ
Τεχνολογία

Λευχαιμία: Η τεχνητή νοημοσύνη παρέχει υποστήριξη στη διάγνωση της νόσου

Λευχαιμία: Η τεχνητή νοημοσύνη παρέχει υποστήριξη στη διάγνωση της νόσου

Λευχαιμία: Οι αποφάσεις για τη θεραπεία ασθενών με οξεία μυελογενή λευχαιμία (ΟΜΛ) βασίζονται, μεταξύ άλλων, σε μια σειρά από ορισμένα γενετικά χαρακτηριστικά της νόσου.


Οι αποφάσεις για τη θεραπεία ασθενών με οξεία μυελογενή λευχαιμία (ΟΜΛ) —μια εξαιρετικά επιθετική μορφή λευχαιμίας— βασίζονται, μεταξύ άλλων, σε μια σειρά από ορισμένα γενετικά χαρακτηριστικά της νόσου. Αλλά τη στιγμή που γίνεται η διάγνωση, αυτές οι πληροφορίες δεν είναι διαθέσιμες. Η απόδειξη αυτών των γενετικών ανωμαλιών είναι ζωτικής σημασίας για την παροχή στοχευμένης θεραπείας σε ασθενείς λευχαιμίας σε πρώιμο στάδιο. Καθώς οι γενετικές εξετάσεις είναι δαπανηρές και χρονοβόρες, υπάρχει μεγάλη ανάγκη για φθηνές, γρήγορες και ευρέως προσβάσιμες εξετάσεις για την πρόβλεψη τέτοιων ανωμαλιών.

Μια ομάδα ειδικών πληροφορικής και ιατρών στο Πανεπιστήμιο του Münster και το Πανεπιστημιακό Νοσοκομείο του Münster δημοσίευσε τώρα μια μελέτη που δείχνει πώς μια μέθοδος που βασίζεται στην τεχνητή νοημοσύνη (AI) μπορεί να χρησιμοποιηθεί για την πρόβλεψη διαφόρων γενετικών χαρακτηριστικών με βάση μικροσκοπικές εικόνες υψηλής ανάλυσης επιχρισμάτων μυελού των οστών. Ως αποτέλεσμα, οι αποφάσεις για μια πιο ακριβή θεραπεία μπορούν να ληφθούν απευθείας την ημέρα της διάγνωσης, χωρίς να χρειάζεται να περιμένουμε για γενετικές αναλύσεις. Αυτά τα αποτελέσματα έχουν δημοσιευθεί στο περιοδικό Blood Advances.

Σε αυτή τη νέα μέθοδο, οι γενετικές εκτροπές εξήχθησαν απευθείας από σαρώσεις πολλαπλών gigabyte εξαιρετικά υψηλής ανάλυσης από επιχρίσματα ολόκληρου του μυελού των οστών που ελήφθησαν από περισσότερους από 400 ασθενείς με AML. Οι σαρώσεις είχαν ανάλυση 270.000 επί 135.000 pixel κατά μέσο όρο, με μία εικόνα να έχει μέγεθος πολλών gigabyte. Με βάση αυτό το τεράστιο σύνολο δεδομένων, ήταν δυνατή η εξαγωγή περισσότερων από 2 εκατομμυρίων εικόνων ενός κελιού.

«Αναπτύξαμε έναν νέο τύπο μεθόδου βαθιάς μάθησης, πλήρως αυτόματης, η οποία εκπαιδεύτηκε για μια σύνθετη εργασία μέσω τεχνολογίας μηχανικής μάθησης», εξηγεί ο καθηγητής Benjamin Risse, ο οποίος ηγήθηκε της εργασίας για τις αλγοριθμικές εξελίξεις από την πλευρά της πληροφορικής. «Στην περίπτωσή μας, ο βασικός αλγόριθμος μπορεί να αναγνωρίσει αυτόματα τα γενετικά χαρακτηριστικά και τα πολύ λεπτά μοτίβα σε μεγάλες κυτταρολογικές εικόνες. Στη συνέχεια, η μέθοδος φιλτράρει τις εικόνες ενός κυττάρου σε κατηγορίες διαφορετικών τύπων κυττάρων και έδειξε επίσης τυχόν γενετικές εκτροπές.

“Είναι ενδιαφέρον ότι πολλά μοτίβα που αναγνωρίζονται από τον αλγόριθμο δεν μπορούν να αναγνωριστούν από ανθρώπινους παρατηρητές. Αυτό συμβαίνει για παράδειγμα επειδή τα μοτίβα μπορεί να είναι πολύ αχνά ή επειδή εμπλέκονται εξαιρετικά λεπτές υφές που παραμένουν κρυμμένες στο ανθρώπινο μάτι, παρά την εξαιρετική απεικόνιση”, λέει ο Risse. .

Ένα βασικό πλεονέκτημα της μεθόδου που παρουσιάζεται είναι ο αγωγός τεχνητής νοημοσύνης από άκρο σε άκρο που επιτρέπει την παρακολούθηση των (ενδιάμεσων) αποτελεσμάτων και μειώνει στο ελάχιστο τη χειροκίνητη προκαταρκτική εργασία που είναι συχνά απαραίτητη για τη μηχανική εκμάθηση. Αυτό γίνεται εφικτό με έναν συνδυασμό των λεγόμενων μη εποπτευόμενων, αυτο-εποπτευόμενων και εποπτευόμενων διαδικασιών μάθησης. Οι δύο πρώτες διαδικασίες δεν απαιτούν καθόλου χειροκίνητη επιλογή δεδομένων, αλλά προσπαθήστε να εξαγάγετε αυτόματα σχετικό περιεχόμενο από τα δεδομένα εικόνας.

“Χρησιμοποιώντας μια λεγόμενη σταδιακή προσέγγιση, πραγματοποιήσαμε ενδιάμεσα βήματα με έναν άνθρωπο ειδικό για να εξετάσουμε τις εικόνες. Αυτό είναι απαραίτητο για παράδειγμα σε κυτταρικές εικόνες που κατηγοριοποιούνται ως προβληματικές”, λέει ο Δρ Linus Angenendt, επικεφαλής του Personalized Cancer Therapy and Digital Ομάδα εργασίας ιατρικής στο Πανεπιστημιακό Νοσοκομείο του Münster. Προβληματικές εικόνες κελιών μπορεί να προκύψουν ως αποτέλεσμα λανθασμένης χρώσης, για παράδειγμα. Το εκπαιδευμένο μοντέλο στη συνέχεια αξιολογήθηκε σε ένα ανεξάρτητο σύνολο δεδομένων που αφορούσε επιπλέον 70 ασθενείς με περισσότερες από 440.000 εικόνες ενός κυττάρου — ως δοκιμαστική κοόρτη.

Αν και η νέα μέθοδος δεν μπορεί να αντικαταστήσει τις γενετικές αναλύσεις, εντούτοις βοηθά σε πολύ πρώιμο στάδιο στη διαδικασία διαγνωστικής αποσαφήνισης για έναν ασθενή με λευχαιμία, παρέχοντας μια ιδέα για το ποιες γενετικές εκτροπές μπορεί να αποτελούν τη βάση της νόσου. Αυτό θα ήταν ιδιαίτερα χρήσιμο στην περίπτωση επιθετικών ασθενειών όταν δεν υπάρχει χρόνος να περιμένουμε τις πλήρεις γενετικές αναλύσεις.

Οι ερευνητές είναι βέβαιοι ότι στο μέλλον οι ψηφιακές μέθοδοι και η τεχνητή νοημοσύνη θα γίνονται όλο και πιο σημαντικές για μεγάλα ιατρικά σύνολα δεδομένων όταν θα κάνουν εξατομικευμένες συστάσεις για τη θεραπεία ασθενών με κακοήθη νοσήματα. Αυτή η μελέτη συνεισφέρει μια σημαντική βάση για αυτό, για παράδειγμα στην ανάπτυξη παρόμοιων προσεγγίσεων για άλλες ασθένειες του μυελού των οστών.

Διαβάστε όλες τις τελευταίες Ειδήσεις για την υγεία από την Ελλάδα και τον Κόσμο
Ακολουθήστε το healthweb.gr στο Google News και μάθετε πρώτοι όλες τις ειδήσεις
Ακολουθήστε το healthweb.gr στο κανάλι μας στο YouTube

Διαβάστε Eπίσης:

Τι είναι η οξεία λεμφοβλαστική λευχαιμία;

Ετήσιο συνέδριο για την χρόνια μυελογενή λευχαιμία

ΕΛΛΟΚ: “Αιματολογικές Κακοήθειες: Μοιραζόμαστε γνώση και εμπειρίες”

Ανακάλυψη θα μπορούσε να είναι το κλειδί για τη μείωση της αντίστασης στη θεραπεία της λευχαιμίας

svg%3E svg%3E
svg%3E
svg%3E
Περισσότερα

Τρισδιάστατα αιμοφόρα αγγεία και ανθρώπινα όργανα

3D printing: Η σύγχρονη ιατρική χρησιμοποιεί τρισδιάστατη εκτύπωση για να δημιουργήσει σκληρά εμφυτεύματα όπως κρανιακές πλάκες και αρθρώσεις ισχίου, προθέσεις άκρων και ιατρικές συσκευές. 

Νέο AI μοντέλο πρόβλεψης της κατάθλιψης

Social media: Η ανάλυση δεδομένων από social media μπορεί να ενσωματώσει επίσης παράγοντες όπως η κοινωνική υποστήριξη, οι διαπροσωπικές σχέσεις και οι αλλαγές στη συμπεριφορά, προσφέροντας μια πιο ολοκληρωμένη εικόνα της ψυχικής υγείας ενός ατόμου.

Επανάσταση στη διάγνωση διαταραχών ύπνου με σύγχρονη τεχνολογία

Έξυπνες πυτζάμες: Οι παραδοσιακές μέθοδοι διάγνωσης και παρακολούθησης των διαταραχών ύπνου συχνά απαιτούν δαπανηρές μελέτες ύπνου σε εργαστήρια. Ωστόσο, μια καινοτόμος ανακάλυψη μπορεί να αλλάξει τον τρόπο που παρακολουθούμε τον ύπνο.

Η χρήση φωτός και βαφών ενδυναμώνει τη θεραπεία του καρκίνου;

Φωτοδυναμική θεραπεία: Μια νέα προσέγγιση στη θεραπεία του καρκίνου αναδύεται με την ανάπτυξη βαφών που ενεργοποιούνται από το φως και οι οποίες δείχνουν υποσχέσεις στο να στοχεύουν και να καταστρέφουν τα καρκινικά κύτταρα.

Νέο τεστ αίματος αλλάζει την πρόγνωση και τη διαχείριση της προεκλαμψίας;

Προεκλαμψία: Ερευνητές παρουσίασαν πρόσφατα ένα νέο τεστ αίματος που χρησιμοποιεί το ελεύθερο κυτταρικό DNA που αποβάλλεται από τον πλακούντα για να προβλέψει με ακρίβεια την εμφάνιση της προεκλαμψίας.

Πώς το AI προβλέπει τα ψυχολογικά συμπτώματα των καρκινοπαθών 

AI: Συνολικά, η χρήση της τεχνητής νοημοσύνης για την πρόβλεψη ψυχολογικών συμπτωμάτων στους καρκινοπαθείς προσφέρει ελπίδα για μια πιο ολιστική προσέγγιση στην αντιμετώπιση της νόσου, αναγνωρίζοντας τη σημασία της ψυχικής υγείας στη συνολική θεραπεία των ασθενών.

Τεστ ανιχνεύει έγκαιρα καρκίνο πνεύμονα σε ασθενείς υψηλού κινδύνου 

Καρκίνος πνεύμονα: Ο ασθενής εισέρχεται σε ένα μηχάνημα αξονικής τομογραφίας και η διαδικασία διαρκεί μόλις λίγα λεπτά. Οι εικόνες που λαμβάνονται επιτρέπουν στους γιατρούς να ανιχνεύσουν τυχόν ανωμαλίες ή όγκους στους πνεύμονες σε πολύ πρώιμο στάδιο, γεγονός που διευκολύνει την έγκαιρη παρέμβαση.

Βοηθά η εικονική πραγματικότητα τους ασθενείς με εγκεφαλικό να ανακάμψουν ταχύτερα;

Εικονική πραγματικότητα: Η αποκατάσταση μετά από εγκεφαλικό επεισόδιο είναι μια κρίσιμη διαδικασία που βοηθά τους ασθενείς να ανακτήσουν τις χαμένες κινητικές λειτουργίες και να βελτιώσουν την ποιότητα ζωής τους.

Close Icon