Search Icon
ΑΝΑΖΗΤΗΣΗ
Τεχνολογία

Η τεχνητή νοημοσύνη μπορεί να ξεγελάσει τους γιατρούς – Πώς;

Η τεχνητή νοημοσύνη μπορεί να ξεγελάσει τους γιατρούς – Πώς;

Ακόμη και με παρεχόμενες εξηγήσεις τεχνητής νοημοσύνης, οι κλινικοί γιατροί μπορούν να ξεγελαστούν από προκατειλημμένα μοντέλα τεχνητής νοημοσύνης.



Τα μοντέλα τεχνητής νοημοσύνης στην υγειονομική περίθαλψη είναι ένα δίκοπο μαχαίρι, με μοντέλα που βελτιώνουν τις διαγνωστικές αποφάσεις για ορισμένα δημογραφικά στοιχεία, αλλά επιδεινώνουν τις αποφάσεις για άλλα όταν το μοντέλο AI έχει απορροφήσει μεροληπτικά ιατρικά δεδομένα.


Δεδομένων των πολύ πραγματικών κινδύνων για τη ζωή και τον θάνατο της λήψης κλινικών αποφάσεων, οι ερευνητές και οι υπεύθυνοι χάραξης πολιτικής λαμβάνουν μέτρα για να διασφαλίσουν ότι τα μοντέλα τεχνητής νοημοσύνης είναι ασφαλή, ασφαλή και αξιόπιστα—και ότι η χρήση τους θα οδηγήσει σε βελτιωμένα αποτελέσματα.

Η Υπηρεσία Τροφίμων και Φαρμάκων των ΗΠΑ έχει την επίβλεψη του λογισμικού που υποστηρίζεται από τεχνητή νοημοσύνη και μηχανική εκμάθηση που χρησιμοποιείται στην υγειονομική περίθαλψη και έχει εκδώσει οδηγίες για τους προγραμματιστές. Αυτό περιλαμβάνει μια έκκληση για να διασφαλιστεί ότι η λογική που χρησιμοποιείται από τα μοντέλα τεχνητής νοημοσύνης είναι διαφανής ή εξηγήσιμη, ώστε οι κλινικοί γιατροί να μπορούν να επανεξετάσουν το υποκείμενο σκεπτικό.

Ωστόσο, μια νέα μελέτη με τίτλο “Measuring the Impact of AI in the Diagnosis of Hospitalized Patients: A Randomized Survey Vignette Multicenter Study” στο JAMA διαπιστώνει ότι ακόμη και με παρεχόμενες εξηγήσεις τεχνητής νοημοσύνης, οι κλινικοί γιατροί μπορούν να ξεγελαστούν από προκατειλημμένα μοντέλα τεχνητής νοημοσύνης.

«Το πρόβλημα είναι ότι ο κλινικός ιατρός πρέπει να καταλάβει τι μεταδίδει η εξήγηση και την ίδια την εξήγηση», είπε η πρώτη συγγραφέας Sarah Jabbour, Ph.D. υποψήφιος στην επιστήμη και τη μηχανική υπολογιστών στο College of Engineering του Πανεπιστημίου του Michigan. Η ομάδα U-M μελέτησε μοντέλα τεχνητής νοημοσύνης και εξηγήσεις τεχνητής νοημοσύνης σε ασθενείς με οξεία αναπνευστική ανεπάρκεια.

“Ο προσδιορισμός γιατί ένας ασθενής έχει αναπνευστική ανεπάρκεια μπορεί να είναι δύσκολος. Στη μελέτη μας, βρήκαμε ότι η βασική διαγνωστική ακρίβεια των κλινικών ιατρών είναι περίπου 73%,” δήλωσε ο Michael Sjoding, M.D., αναπληρωτής καθηγητής εσωτερικής ιατρικής στην Ιατρική Σχολή U-M, συν-ανώτερος συγγραφέας στη μελέτη.

“Κατά τη διάρκεια της κανονικής διαγνωστικής διαδικασίας, σκεφτόμαστε το ιστορικό ενός ασθενούς, τις εργαστηριακές εξετάσεις και τα αποτελέσματα απεικόνισης και προσπαθούμε να συνθέσουμε αυτές τις πληροφορίες και να καταλήξουμε σε μια διάγνωση. Είναι λογικό ότι ένα μοντέλο θα μπορούσε να βοηθήσει στη βελτίωση της ακρίβειας.”

Jabbour, Sjoding, συν-ανώτερος συγγραφέας, Jenna Wiens, Ph.D., αναπληρώτρια καθηγήτρια επιστήμης και μηχανικής υπολογιστών και η διεπιστημονική ομάδα τους σχεδίασαν μια μελέτη για την αξιολόγηση της διαγνωστικής ακρίβειας 457 νοσοκομειακών γιατρών, νοσηλευτών και βοηθών ιατρών με και χωρίς βοήθεια από ένα μοντέλο AI.

Κάθε κλινικός ιατρός κλήθηκε να κάνει συστάσεις θεραπείας με βάση τις διαγνώσεις του. Οι μισοί τυχαιοποιήθηκαν για να λάβουν επεξήγηση τεχνητής νοημοσύνης με την απόφαση μοντέλου τεχνητής νοημοσύνης, ενώ οι άλλοι μισοί έλαβαν μόνο την απόφαση τεχνητής νοημοσύνης χωρίς καμία εξήγηση. Στη συνέχεια δόθηκαν στους κλινικούς γιατρούς πραγματικές κλινικές βινιέτες ασθενών με αναπνευστική ανεπάρκεια, καθώς και μια βαθμολογία από το μοντέλο AI για το εάν ο ασθενής είχε πνευμονία, καρδιακή ανεπάρκεια ή ΧΑΠ.

Στους μισούς από τους συμμετέχοντες που τυχαιοποιήθηκαν για να δουν εξηγήσεις, ο κλινικός ιατρός έλαβε έναν θερμικό χάρτη ή οπτική αναπαράσταση του σημείου που το μοντέλο AI έψαχνε στην ακτινογραφία θώρακα, η οποία χρησίμευσε ως βάση για τη διάγνωση. Η ομάδα διαπίστωσε ότι οι κλινικοί γιατροί στους οποίους παρουσιάστηκε ένα μοντέλο τεχνητής νοημοσύνης εκπαιδευμένο να κάνουν λογικά ακριβείς προβλέψεις, αλλά χωρίς εξηγήσεις, είχαν τη δική τους αύξηση της ακρίβειας κατά 2,9 ποσοστιαίες μονάδες.

Όταν δόθηκε εξήγηση, η ακρίβειά τους αυξήθηκε κατά 4,4 ποσοστιαίες μονάδες. Ωστόσο, για να ελέγξει εάν μια εξήγηση θα μπορούσε να επιτρέψει στους κλινικούς ιατρούς να αναγνωρίσουν πότε ένα μοντέλο τεχνητής νοημοσύνης είναι σαφώς προκατειλημμένο ή λανθασμένο, η ομάδα παρουσίασε επίσης στους κλινικούς ιατρούς μοντέλα που εκπαιδεύτηκαν σκόπιμα να είναι προκατειλημμένα – για παράδειγμα, ένα μοντέλο που προβλέπει υψηλή πιθανότητα πνευμονίας εάν ο ασθενής ήταν 80 ετών και άνω.

“Τα μοντέλα τεχνητής νοημοσύνης είναι επιρρεπή σε συντομεύσεις ή ψευδείς συσχετισμούς στα δεδομένα εκπαίδευσης. Δεδομένου ενός συνόλου δεδομένων στο οποίο οι γυναίκες υποδιαγιγνώσκονται με καρδιακή ανεπάρκεια, το μοντέλο θα μπορούσε να εντοπίσει μια συσχέτιση μεταξύ του να είναι γυναίκες και να διατρέχουν χαμηλότερο κίνδυνο καρδιακής ανεπάρκειας”, εξήγησε η Wiens. Η παρατηρούμενη πτώση στην απόδοση ευθυγραμμίζεται με προηγούμενες μελέτες που βρήκαν ότι οι χρήστες μπορεί να εξαπατηθούν από τα μοντέλα, σημείωσε η ομάδα.

 

 

Διαβάστε όλες τις τελευταίες Ειδήσεις για την υγεία από την Ελλάδα και τον Κόσμο
Ακολουθήστε το healthweb.gr στο Google News και μάθετε πρώτοι όλες τις ειδήσεις
Ακολουθήστε το healthweb.gr στο κανάλι μας στο YouTube

Διαβάστε Eπίσης:

Μελέτη AI αποκαλύπτει τη μοναδική επιφάνεια της γλώσσας

Health Tech: Επανάσταση στον τομέα της αποκατάστασης

Τι σκέφτονται οι γιατροί για τον ρόλο της τεχνητής νοημοσύνης στην ιατρική;

Με ποιον τρόπο βοηθά η τεχνολογία σε θέματα ψυχικής υγείας;

svg%3E svg%3E
svg%3E
Αφιέρωμα στον Διαβήτη healthwebgr svg%3E
Περισσότερα

Νέα μέθοδος ανάπτυξης αιμοφόρων αγγείων σε εργαστηριακά οργανοειδή 

Οι ερευνητές έχουν αναπτύξει ένα καινοτόμο πρωτόκολλο που περιλαμβάνει τη χρήση βιοϋλικών, κυτταρικών παραγόντων και μοριακών σηματοδοτών για την προώθηση της αγγειογένεσης σε τρισδιάστατα οργανοειδή.

Τεχνητή νοημοσύνη: Μπορεί να βοηθήσει στην ανίχνευση εγκεφαλικών όγκων;

Τεχνητή νοημοσύνη: Οι ακτινολόγοι βρίσκονται μπροστά σε μια σημαντική επανάσταση στον τομέα της ιατρικής απεικόνισης, καθώς η τεχνητή νοημοσύνη αναμένεται να παίξει καθοριστικό ρόλο στην ανίχνευση εγκεφαλικών όγκων.

Νευρωνική διεπαφή: Πρόσβαση στον εγκέφαλο χωρίς επεμβατική χειρουργική

Νευρωνική διεπαφή: Οι τελευταίες εξελίξεις στην ιατρική τεχνολογία οδήγησαν στην ανάπτυξη μιας νέας ελάχιστα επεμβατικής νευρωνικής διεπαφής που υπόσχεται να αλλάξει δραστικά τον τρόπο αλληλεπίδρασης με τον εγκέφαλο.

Η τεχνική που επαναπροσδιορίζει τη µεταµόσχευση οργάνων 

Ένα από τα πιο υποσχόμενα πεδία έρευνας είναι η βιολογία των βλαστοκυττάρων. Τα βλαστοκύτταρα έχουν την ικανότητα να διαφοροποιούνται σε πολλούς τύπους κυττάρων και μπορούν να χρησιμοποιηθούν για την αναγέννηση κατεστραμμένων οργάνων ή ιστών.

Νέο σύστημα φακών για ενδοσκόπια επιτρέπει στους γιατρούς να δουν μέσα στο σώμα όπως ποτέ άλλοτε

Ενδοσκόπιο: Έχει σχεδιαστεί ένα νέο είδος συστήματος φακών για την άκρη ενός ενδοσκοπίου, το οποίο θα μπορούσε να επιτρέψει στους γιατρούς να βλέπουν και να θεραπεύουν περιοχές βαθιά μέσα στο σώμα.

Ρομποτική χειρουργική: Ο νέος τρόπος αντιμετώπισης της πρόπτωσης μήτρας

Ρομποτική χειρουργική: Η πρόπτωση της μήτρας, όπου η μήτρα υποχωρεί από τη φυσική της θέση και κατέρχεται στον κόλπο, είναι μια συχνή κατάσταση που επηρεάζει πολλές γυναίκες, ειδικά εκείνες που έχουν υποβληθεί σε τοκετούς.

Τεχνητή νοημοσύνη: Ο νέος σύμμαχος στην ανίχνευση καρκινικών όγκων εγκεφάλου

Τεχνητή νοημοσύνη: Ένα επαναστατικό μοντέλο τεχνητής νοημοσύνης έχει αναπτυχθεί για τον εντοπισμό καρκινικών όγκων στον εγκέφαλο με απίστευτη ταχύτητα και ακρίβεια.

Close Icon