Search Icon
ΑΝΑΖΗΤΗΣΗ
Τεχνολογία

Η τεχνητή νοημοσύνη μπορεί να ξεγελάσει τους γιατρούς – Πώς;

Η τεχνητή νοημοσύνη μπορεί να ξεγελάσει τους γιατρούς – Πώς;

Ακόμη και με παρεχόμενες εξηγήσεις τεχνητής νοημοσύνης, οι κλινικοί γιατροί μπορούν να ξεγελαστούν από προκατειλημμένα μοντέλα τεχνητής νοημοσύνης.

Τα μοντέλα τεχνητής νοημοσύνης στην υγειονομική περίθαλψη είναι ένα δίκοπο μαχαίρι, με μοντέλα που βελτιώνουν τις διαγνωστικές αποφάσεις για ορισμένα δημογραφικά στοιχεία, αλλά επιδεινώνουν τις αποφάσεις για άλλα όταν το μοντέλο AI έχει απορροφήσει μεροληπτικά ιατρικά δεδομένα.

Δεδομένων των πολύ πραγματικών κινδύνων για τη ζωή και τον θάνατο της λήψης κλινικών αποφάσεων, οι ερευνητές και οι υπεύθυνοι χάραξης πολιτικής λαμβάνουν μέτρα για να διασφαλίσουν ότι τα μοντέλα τεχνητής νοημοσύνης είναι ασφαλή, ασφαλή και αξιόπιστα—και ότι η χρήση τους θα οδηγήσει σε βελτιωμένα αποτελέσματα.

Η Υπηρεσία Τροφίμων και Φαρμάκων των ΗΠΑ έχει την επίβλεψη του λογισμικού που υποστηρίζεται από τεχνητή νοημοσύνη και μηχανική εκμάθηση που χρησιμοποιείται στην υγειονομική περίθαλψη και έχει εκδώσει οδηγίες για τους προγραμματιστές. Αυτό περιλαμβάνει μια έκκληση για να διασφαλιστεί ότι η λογική που χρησιμοποιείται από τα μοντέλα τεχνητής νοημοσύνης είναι διαφανής ή εξηγήσιμη, ώστε οι κλινικοί γιατροί να μπορούν να επανεξετάσουν το υποκείμενο σκεπτικό.

Ωστόσο, μια νέα μελέτη με τίτλο “Measuring the Impact of AI in the Diagnosis of Hospitalized Patients: A Randomized Survey Vignette Multicenter Study” στο JAMA διαπιστώνει ότι ακόμη και με παρεχόμενες εξηγήσεις τεχνητής νοημοσύνης, οι κλινικοί γιατροί μπορούν να ξεγελαστούν από προκατειλημμένα μοντέλα τεχνητής νοημοσύνης.

«Το πρόβλημα είναι ότι ο κλινικός ιατρός πρέπει να καταλάβει τι μεταδίδει η εξήγηση και την ίδια την εξήγηση», είπε η πρώτη συγγραφέας Sarah Jabbour, Ph.D. υποψήφιος στην επιστήμη και τη μηχανική υπολογιστών στο College of Engineering του Πανεπιστημίου του Michigan. Η ομάδα U-M μελέτησε μοντέλα τεχνητής νοημοσύνης και εξηγήσεις τεχνητής νοημοσύνης σε ασθενείς με οξεία αναπνευστική ανεπάρκεια.

“Ο προσδιορισμός γιατί ένας ασθενής έχει αναπνευστική ανεπάρκεια μπορεί να είναι δύσκολος. Στη μελέτη μας, βρήκαμε ότι η βασική διαγνωστική ακρίβεια των κλινικών ιατρών είναι περίπου 73%,” δήλωσε ο Michael Sjoding, M.D., αναπληρωτής καθηγητής εσωτερικής ιατρικής στην Ιατρική Σχολή U-M, συν-ανώτερος συγγραφέας στη μελέτη.

“Κατά τη διάρκεια της κανονικής διαγνωστικής διαδικασίας, σκεφτόμαστε το ιστορικό ενός ασθενούς, τις εργαστηριακές εξετάσεις και τα αποτελέσματα απεικόνισης και προσπαθούμε να συνθέσουμε αυτές τις πληροφορίες και να καταλήξουμε σε μια διάγνωση. Είναι λογικό ότι ένα μοντέλο θα μπορούσε να βοηθήσει στη βελτίωση της ακρίβειας.”

Jabbour, Sjoding, συν-ανώτερος συγγραφέας, Jenna Wiens, Ph.D., αναπληρώτρια καθηγήτρια επιστήμης και μηχανικής υπολογιστών και η διεπιστημονική ομάδα τους σχεδίασαν μια μελέτη για την αξιολόγηση της διαγνωστικής ακρίβειας 457 νοσοκομειακών γιατρών, νοσηλευτών και βοηθών ιατρών με και χωρίς βοήθεια από ένα μοντέλο AI.

Κάθε κλινικός ιατρός κλήθηκε να κάνει συστάσεις θεραπείας με βάση τις διαγνώσεις του. Οι μισοί τυχαιοποιήθηκαν για να λάβουν επεξήγηση τεχνητής νοημοσύνης με την απόφαση μοντέλου τεχνητής νοημοσύνης, ενώ οι άλλοι μισοί έλαβαν μόνο την απόφαση τεχνητής νοημοσύνης χωρίς καμία εξήγηση. Στη συνέχεια δόθηκαν στους κλινικούς γιατρούς πραγματικές κλινικές βινιέτες ασθενών με αναπνευστική ανεπάρκεια, καθώς και μια βαθμολογία από το μοντέλο AI για το εάν ο ασθενής είχε πνευμονία, καρδιακή ανεπάρκεια ή ΧΑΠ.

Στους μισούς από τους συμμετέχοντες που τυχαιοποιήθηκαν για να δουν εξηγήσεις, ο κλινικός ιατρός έλαβε έναν θερμικό χάρτη ή οπτική αναπαράσταση του σημείου που το μοντέλο AI έψαχνε στην ακτινογραφία θώρακα, η οποία χρησίμευσε ως βάση για τη διάγνωση. Η ομάδα διαπίστωσε ότι οι κλινικοί γιατροί στους οποίους παρουσιάστηκε ένα μοντέλο τεχνητής νοημοσύνης εκπαιδευμένο να κάνουν λογικά ακριβείς προβλέψεις, αλλά χωρίς εξηγήσεις, είχαν τη δική τους αύξηση της ακρίβειας κατά 2,9 ποσοστιαίες μονάδες.

Όταν δόθηκε εξήγηση, η ακρίβειά τους αυξήθηκε κατά 4,4 ποσοστιαίες μονάδες. Ωστόσο, για να ελέγξει εάν μια εξήγηση θα μπορούσε να επιτρέψει στους κλινικούς ιατρούς να αναγνωρίσουν πότε ένα μοντέλο τεχνητής νοημοσύνης είναι σαφώς προκατειλημμένο ή λανθασμένο, η ομάδα παρουσίασε επίσης στους κλινικούς ιατρούς μοντέλα που εκπαιδεύτηκαν σκόπιμα να είναι προκατειλημμένα – για παράδειγμα, ένα μοντέλο που προβλέπει υψηλή πιθανότητα πνευμονίας εάν ο ασθενής ήταν 80 ετών και άνω.

“Τα μοντέλα τεχνητής νοημοσύνης είναι επιρρεπή σε συντομεύσεις ή ψευδείς συσχετισμούς στα δεδομένα εκπαίδευσης. Δεδομένου ενός συνόλου δεδομένων στο οποίο οι γυναίκες υποδιαγιγνώσκονται με καρδιακή ανεπάρκεια, το μοντέλο θα μπορούσε να εντοπίσει μια συσχέτιση μεταξύ του να είναι γυναίκες και να διατρέχουν χαμηλότερο κίνδυνο καρδιακής ανεπάρκειας”, εξήγησε η Wiens. Η παρατηρούμενη πτώση στην απόδοση ευθυγραμμίζεται με προηγούμενες μελέτες που βρήκαν ότι οι χρήστες μπορεί να εξαπατηθούν από τα μοντέλα, σημείωσε η ομάδα.

 

 

Διαβάστε όλες τις τελευταίες Ειδήσεις για την υγεία από την Ελλάδα και τον Κόσμο
Ακολουθήστε το healthweb.gr στο Google News και μάθετε πρώτοι όλες τις ειδήσεις
Ακολουθήστε το healthweb.gr στο κανάλι μας στο YouTube

Διαβάστε Eπίσης:

Μελέτη AI αποκαλύπτει τη μοναδική επιφάνεια της γλώσσας

Health Tech: Επανάσταση στον τομέα της αποκατάστασης

Τι σκέφτονται οι γιατροί για τον ρόλο της τεχνητής νοημοσύνης στην ιατρική;

Με ποιον τρόπο βοηθά η τεχνολογία σε θέματα ψυχικής υγείας;

svg%3E svg%3E
svg%3E
svg%3E
Περισσότερα

3D κυτταρικό μοντέλο: Μια νέα προσέγγιση στη θεραπεία τραυματισμών χειλιών

3D κυτταρικό μοντέλο: Οι ερευνητές έχουν σημειώσει μια σημαντική πρόοδο στην αναγεννητική ιατρική, δημιουργώντας το πρώτο τρισδιάστατο κυτταρικό μοντέλο στον κόσμο που έχει σχεδιαστεί ειδικά για τη μελέτη τραυματισμών στα χείλη.

Υγειονομική περίθαλψη: Πώς το AI δημιουργεί ένα νέο ψηφιακό χάσμα υγείας

Υγειονομική περίθαλψη: Καθώς βρισκόμαστε στο κατώφλι μιας επανάστασης στον τομέα της υγειονομικής περίθαλψης, είναι κρίσιμο να εξετάσουμε τις βαθιές κοινωνικές επιπτώσεις που συνεπάγεται.

Καρκίνος του Μαστού: Νέες γνώσεις από την κυτταρική ανάλυση

Καρκίνος του Μαστού: Η πρόσφατη έρευνα προσφέρει μια σημαντική κατανόηση των διάφορων τύπων κυττάρων του μαστού και της σχέσης τους με την ανάπτυξη και εξάπλωση του καρκίνου του μαστού.

Μετρητές γλυκόζης: Μια νέα τάση για την προσωπική ευεξία;

Μετρητές γλυκόζης: Καθώς οι τομείς της ευεξίας και της τεχνολογίας υγείας εξελίσσονται, οι μετρητές γλυκόζης προσελκύουν το ενδιαφέρον ως ενδεχόμενο νέο αξεσουάρ για όσους ενδιαφέρονται για την προσωπική τους υγεία.

Υπέρηχος: Νέα ελπίδα για γρήγορη διάγνωση εγκεφαλικών τραυματισμών

Υπέρηχος: Η τεχνολογία του υπερήχου, γνωστή για τη χρήση της στη διάγνωση διαφόρων ιατρικών καταστάσεων, αποδεικνύεται ολοένα και πιο χρήσιμη και ως εργαλείο αναζήτησης και διάσωσης, ιδίως σε περιπτώσεις εγκεφαλικών τραυματισμών.

Καρκίνος του προστάτη: Πώς η τεχνητή νοημοσύνη βελτιώνει τη διάγνωση του;

Καρκίνος του προστάτη: Η ενσωμάτωση της τεχνητής νοημοσύνης στον ιατρικό τομέα έχει επαναστατήσει διάφορες διαγνωστικές διαδικασίες, με μία από τις πιο υποσχόμενες εφαρμογές της να είναι η μέτρηση και ανάλυση των βλαβών του καρκίνου του προστάτη.

Διαγνωστική επανάσταση: Ανίχνευση σηψαιμίας σε νεογέννητα με τεχνητή νοημοσύνη

Διαγνωστική επανάσταση: Νέα ερευνητικά δεδομένα έχουν οδηγήσει στην ανάπτυξη ενός καινοτόμου εργαλείου που μπορεί να προβλέψει τη σηψαιμία σε νεογέννητα που φαίνονται υγιή.

Close Icon