Συστήματα Διαλόγου και Πληροφοριών: Τα τελευταία χρόνια, οι επιστήμονες πληροφορικής προσπαθούν να δημιουργήσουν όλο και πιο προηγμένα συστήματα διαλόγου και πληροφοριών. Η κυκλοφορία του ChatGPT και άλλων γλωσσικών μοντέλων με υψηλές επιδόσεις αποδεικνύουν πόσο μακριά μπορεί να φτάσει η τεχνητή νοημοσύνη στην απάντηση ερωτήσεων χρηστών, στη συγγραφή κειμένων και στη συνομιλία με ανθρώπους. Ερευνητές του Πανεπιστημίου της Καλιφόρνια-Ριβερσάιντ, της École Normale Supérieure (ECN) στο Παρίσι και του Ludwig-Maximilians-Universität München ανέπτυξαν ένα μεγάλο γλωσσικό μοντέλο που μπορεί να απαντήσει σε φιλοσοφικές ερωτήσεις με τη φωνή ενός συγκεκριμένου φιλοσόφου. Το μοντέλο αυτό, το οποίο παρουσιάζεται σε μια εργασία που δημοσιεύθηκε στον διακομιστή προτυπωμάτων arXiv, μπορεί να παράγει αυτόνομα απαντήσεις που μοιάζουν πολύ με αυτές που παράγονται από ανθρώπους φιλοσόφους.
“Η Anna Strasser, ο Matthew Crosby και εγώ είχαμε παρατηρήσει ότι οι άνθρωποι δημιουργούσαν αποτελέσματα GPT-3 στο ύφος διαφόρων συγγραφέων ή άλλων φιλοσόφων”, δήλωσε στο Tech Xplore ο Eric Schwitzgebel, ένας από τους ερευνητές που πραγματοποίησαν τη μελέτη. “Σκεφτήκαμε ότι θα ήταν ενδιαφέρον να δούμε αν θα μπορούσαμε να τελειοποιήσουμε τον GPT-3 (Παραγωγικό προ-εκπαιδευμένο μετασχηματιστή 3) στο σύνολο του έργου ενός φιλοσόφου, στη συνέχεια να του θέσουμε ερωτήσεις και να δούμε αν έλεγε πράγματα που θα μπορούσε να είχε πει ο πραγματικός φιλόσοφος”. Οι ερευνητές αποφάσισαν να χρησιμοποιήσουν τον GPT-3, ένα μοντέλο που δημιουργήθηκε από την OpenAI και στηρίζει τη λειτουργία του ChatGPT. Αρχικά εκπαίδευσαν αυτό το μοντέλο σε κείμενα του Καντ, στη συνέχεια στο ιστολόγιο του Schwitzgebel, που ονομάζεται ‘το σπινθηροβόλο Μυαλό’ και τέλος, με την άδειά του, στα περισσότερα έργα του Αμερικανού φιλοσόφου Daniel Dennett. “Αποφασίσαμε ότι θα ήταν ενδιαφέρον να δούμε αν οι ειδικοί θα μπορούσαν να διακρίνουν το εκλεπτυσμένο μοντέλο από τις απαντήσεις του Dennett στις ίδιες ερωτήσεις”, δήλωσε ο Schwitzgebel. “Ο Matt έπρεπε να εγκαταλείψει το πρόγραμμα, οπότε φέραμε τον γιο μου David Schwitzgebel, ο οποίος είναι μεταπτυχιακός φοιτητής γνωστικών επιστημών στην ENS στο Παρίσι”.
Το GPT-3 είναι ένα αυτοπαλίνδρομο γλωσσικό μοντέλο που χρησιμοποιεί βαθιά μάθηση για τη δημιουργία κειμένων. Το μοντέλο ουσιαστικά προβλέπει την επόμενη λέξη σε μια πρόταση ή σε μια ακολουθία λέξεων, χρησιμοποιώντας πολύπλοκες και ισχυρές στατιστικές τεχνικές. “Για παράδειγμα, ας υποθέσουμε ότι λέω: ‘Θα πάω τη γυναίκα μου σε ένα ρομαντικό ταξίδι στο’ και στη συνέχεια σας ζητώ να μαντέψετε την επόμενη λέξη”, εξήγησε ο Schwitzgebel. “Είναι πιθανότερο να απαντήσετε “Παρίσι”, κατά πάσα πιθανότητα, παρά “σκουπίδια” ή “κίτρινο” -αν και φυσικά η πρόταση θα μπορούσε να συμπληρωθεί με διάφορους τρόπους. Χρησιμοποιώντας ένα τεράστιο σώμα κειμένων, το GPT-3 εξετάζει ολόκληρο το προηγούμενο πλαίσιο μιας πρότασης (έως και αρκετές εκατοντάδες λέξεις) και στη συνέχεια μαντεύει στατιστικά την επόμενη λέξη. Το κάνει αυτό όχι επειδή “ξέρει” ότι το Παρίσι είναι ρομαντικό, αλλά μάλλον επειδή στη μεγάλη βάση δεδομένων της γλωσσικής χρήσης θα έχει δει λέξεις όπως “ρομαντικό” και “ταξίδι” να προηγούνται του “Παρίσι” συχνότερα από ό,τι προηγούνται του “σκουπίδι”.” Στο πλαίσιο της πρόσφατης μελέτης τους, ο Schwitzgebel και οι συνεργάτες του τελειοποίησαν το GPT-3 σε προηγούμενες εργασίες του Dannett. Με άλλα λόγια, εκπαίδευσαν περαιτέρω το μοντέλο στα κείμενα του φιλοσόφου, ώστε να διασφαλίσουν ότι σταθμίζει τα τυπικά μοτίβα χρήσης λέξεων του Dennett περισσότερο από άλλα μοτίβα χρήσης λέξεων όταν προβλέπει την επόμενη λέξη σε μια πρόταση.